Peptidomimetics Laboratory @JNCASR
Publications
28. Conformational Studies of β-Azapeptoid Foldamers: A New Class of Peptidomimetics with Confined Dihedrals. Anshulata, Vishnoi, P.; Sarma, B. K.* Chem. Eur. J. 2024, 30, e2023033.
27. Synergistic n→π* and nN→π*Ar interactions in C-terminal modified prolines: Effect on Xaa-Pro cis/trans equilibrium. Deka, J. K. R.; Borah. D.; Das, P.; Sahariah, B; Vishnoi, P.; Sarma, B. K.* Chem. Commun. 2023, 59, 6080.
26. Sidechain-Backbone Tetrel Bonding Interactions Provide a General Mechanism for trans-Peptoid Stabilization. Baruah, K.; Kalita, D.; Sahariah, B; Deka, J. K. R.; Vishnoi, P.; Sarma, B. K.* Chem. Eur. J. 2023, 29, e202300178.
25. Understanding the Cis–Trans Amide Bond Isomerization of N,N′-Diacylhydrazines to Develop Guidelines for A Priori Prediction of Their Most Stable Solution Conformers. Deka, J. K. R.; Sahariah, B; Sarma, B. K. J. Org. Chem. 2023. https://doi.org/10.1021/acs.joc.2c01891
24. Strategies to Control the cis-trans Isomerization of Peptoid Amide Bonds. Kalita, D.; Sahariah, B.; Mookerjee, S. P.; Sarma, B. K.*
Chem. Asian. J. 2022. https://doi.org/10.1002/asia.20220014 (Invited review)
23. Deciphering the Backbone Noncovalent Interactions that Stabilize Polyproline II Conformation and Reduce cis Proline Abundance in Polyproline Tracts. Sahariah, B; Sarma, B. K.* J. Phys. Chem. B. 2021,125, 49, 13394-13405. https://doi.org/10.1021/acs.jpcb.1c07875
22. nN → π*Ar interactions stabilize the E-ac isomers of arylhydrazides and facilitate their SNAr autocyclizations. Deka, J. K. R.; Kalita, D.; Sahariah, B; Sarma, B. K.* Chem. Commun. 2021, 57, 11236. https://doi.org/10.1039/D1CC04533D
21. Stabilization of Azapeptides by N(amide)....HN(amide) Hydrogen Bonds. Kalpita Baruah, Sahariah, B; Sakpal, S. S.; Deka, J. K. R.; Bar A. K.; Bagchi, S.*; Sarma, B. K.* Org. Lett. 2021, 23, 13, 4949–4954. https://doi.org/10.1021/acs.orglett.1c01111
20. Evidence of an nN(amide) → π*Ar Interaction in N-Alkyl-N,N′-diacylhydrazines. Deka, J. K. R.; Sahariah, B; Sakpal, S. S.; Bar A. K. Bar; Bagchi, S.*; Sarma, B. K.* Org. Lett. 2021, 23, 18, 7003-7007. https://doi.org/10.1021/acs.orglett.1c00834.
19. Spectroscopic evidence of n → π* interactions involving carbonyl groups. Sahariah, B.; Sarma, B. K.* Phys. Chem. Chem. Phys. 2020, 22, 26669-26681. https://doi.org/10.1039/D0CP03557B
18. Conformational control of N-methyl-N,N′-diacylhydrazines by noncovalent carbon bonding in solution. Deka, J. K. R.; Sahariah, B; Baruah, K.; Bar A. K. Bar; Sarma, B. K.* Chem. Commun. 2020, 56, 4874-4877. https://doi.org/10.1039/D0CC00943A
17. Solid-Phase Synthesis of Hybrid 2,5-Diketopiperazines Using Acylhydrazide, Carbazate, Semicarbazide, Amino Acid, and Primary Amine Submonomers. Rahim, A.; Sahariah, B.; Baruah, K.; Deka, J. K. R.; Sarma, B. K.* J. Org.Chem. 2020, 85, 2927-2937. https://doi.org/10.1021/acs.joc.9b02083
16. Relative Orientation of the Carbonyl Groups Determines the Nature of Orbital Interactions in Carbonyl-Carbonyl Short Contacts. Sahariah, B.; Sarma, B. K.* Chem. Sci. 2019, 10, 909-917. https://doi.org/10.1039/C8SC04221G
15. N,N′-Di(acylamino)-2,5-diketopiperazines: Strategic Incorporation of Reciprocal n → π* Interactions in a Druglike Scaffold Rahim, A.; Sahariah, B.; Sarma, B. K.* Org. Lett. 2018, 20, 5743–5746. https://doi.org/10.1021/acs.orglett.8b02449
14. Reciprocal Carbonyl-Carbonyl Interactions in Small Molecules and Proteins. Rahim, A.; Saha, P.; Jha, K. K.; Sukumar, N.; Sarma, B. K.* Nat. Commun. 2017, 8(1), 78. https://www.nature.com/articles/s41467-017-00081-x
13. Identification of Potent and Selective Platelet-Activating Factor Acetylhydrolase 1b2 Inhibitor from the On-bead Screening of an Oxadiazolone Tethered Library. Sarma, B. K.; Liu, X.; Kodadek, T.* Bioorg. Med. Chem. 2016, 24, 3953-3963. (Special Issue: Chemistry and Chemical Biology of Therapeutically Important Compounds).
12. Solid Phase Synthesis of 1,3,4-oxadiazin-5 (6R)-one and 1,3,4-oxadiazol-2-one Scaffolds from Acyl Hydrazide. Sarma, B. K., Liu, X.; Wu, Hao; Gao, Y.; Kodadek, T* Org. Biomol. Chem. (communication) 2015, 13, 59–63.
11. Redox Regulation of Protein Tyrosine Phosphatase 1B (PTP1B): Importance of Steric and Electronic Effects on the Unusual Cyclization of the Sulfenic Acid Intermediate to a Sulfenyl Amide. Sarma, B. K.* J. Mol. Struct. 2013, 1048, 410–419.
10. Sub-monomer Synthesis of A Peptoid-Azapeptoid Library. Sarma, B. K.; Kodadek, T.* ACS Comb. Sci. 2012, 14, 558−564.
9. Acyl hydrazides as peptoid sub-monomers. Sarma, B. K.; Yousufuddin, M.; Kodadek, T.* Chem. Commun. 2011, 47, 10590-10592.
8. Synthesis, Structure, Spirocyclization Mechanism and Glutathione Peroxidase-like Antioxidant Activity of Stable Spirodiazaselenurane and Spirodiazatellurane. Sarma, B. K.; Manna, D.; Minoura, M.; Mugesh, G.* J. Am. Chem. Soc. 2010, 132, 5364-5374.
7. Theoretical Investigations on the Effect of Different Nitrogen Donors on Se•••N Intramolecular Interactions. Sarma, B. K.; Mugesh, G.* ChemPhysChem 2009, 10, 3013-3020.
6. Antioxidant Activity of the Anti-inflammatory Compound Ebselen: A Reversible Cyclization Pathway via Selenenic and Seleninic Acid Intermediates. Sarma, B. K.; Mugesh, G.* Chem. Eur. J. 2008, 14, 10603-10614.
5. Thiol Cofactors for Selenoenzymes and Their Synthetic Mimics. Sarma, B. K.; Mugesh, G.* Org. Biomol. Chem. 2008, 6, 965-974.
[This work has been featured inside Cover Page of the Journal]
4. Redox Regulation of Protein Tyrosine Phosphatase 1B (PTP1B): A Biomimetic Study on the Unexpected Formation of a Sulfenyl Amide Intermediate. Sarma, B. K.; Mugesh, G.* J. Am. Chem. Soc. 2007, 129, 8872-8881.
3. Biomimetic Studies on Selenoenzymes: Modeling the Role of Proximal Histidines in Thioredoxin Reductases. Sarma, B. K.; Mugesh, G. Inorg. Chem. 2006, 45, 5307-5314.
2. Selenium-containing Enzymes in Mammals: Chemical Perspectives. Roy, G.; Sarma, B. K.; Phadnis, P. P.; Mugesh, G.* J. Chem. Sci. 2005, 117, 287-303. [This paper has been featured on the Cover Page of the Journal].
1. Glutathione Peroxidase (GPx)-like Antioxidant Activity of the Organoselenium Drug Ebselen: Unexpected Complications with Thiol Exchange Reactions. Sarma, B. K.; Mugesh, G.* J. Am. Chem. Soc. 2005, 127, 11477-11485.